Search results for " Aneuploidy"
showing 10 items of 18 documents
DNA demethylation caused By 5-Aza-2'-Deoxycytidine induces mitotic alterations and aneuploidy
2016
Aneuploidy, the unbalanced number of chromosomes in a cell, is considered a prevalent form of genetic instability and is largely acknowledged as a condition implicated in tumorigenesis. Epigenetic alterations like DNA hypomethylation have been correlated with cancer initiation/progression. Furthermore, a growing body of evidence suggests the involvement of epigenome-wide disruption as a cause of global DNA hypomethylation in aneuploidy generation. Here, we report that the DNA hypomethylating drug 5-aza-2′-deoxycytidine (DAC), affects the correct ploidy of nearly diploid HCT-116 human cells by altering the methylation pattern of the chromosomes. Specifically, we show that a DAC-induced reduc…
Retinoblastoma epidemiology: Does the evidence matter?
2007
It has been proposed that retinoblastoma is 'caused' by two sequential mutations affecting the RB1 gene, but this is a rather outdated view of cancer aetiology that does not take into account a large amount of new acquisitions such as chromosomal and epigenetic alterations. Retinoblastoma remains probably the only cancer in which the rather simplistic 'two hit' mutational model is still considered of value, although cancer is known to be associated with genomic and microsatellite instability, defects of the DNA mismatch repair system, alterations of DNA methylation and hystone acethylation/deacethylation, and aneuploidy. Moreover, as it is shown herein, the predictions made by the 'two hit'…
Pathogenic correlation between mosaic variegated aneuploidy 1 (MVA1) and a novel BUB1B variant: a reappraisal of a severe syndrome.
2022
Funder: Università degli Studi di Catania
RB acute loss induces centrosome amplification and aneuploidy in murine primary fibroblasts
2006
AbstractBackgroundIncorrect segregation of whole chromosomes or parts of chromosome leads to aneuploidy commonly observed in cancer. The correct centrosome duplication, assuring assembly of a bipolar mitotic spindle, is essential for chromosome segregation fidelity and preventing aneuploidy. Alteration of p53 and pRb functions by expression of HPV16-E6 and E7 oncoproteins has been associated with centrosome amplification. However, these last findings could be the result of targeting cellular proteins in addition to pRb by HPV16-E7 oncoprotein. To get a more detailed picture on the role of pRb in chromosomal instability and centrosome amplification, we analyzed the effects of the acute loss …
“DNA Methyl transferase 1 post-trascriptional silencing indues aneuploidy and cell cycle arrest in human cells”,
2009
Simultaneous Aurora-A/STK15 overexpression and centrosome amplification induce chromosomal instability in tumour cells with a MIN phenotype
2007
Abstract Background Genetic instability is a hallmark of tumours and preneoplastic lesions. The predominant form of genome instability in human cancer is chromosome instability (CIN). CIN is characterized by chromosomal aberrations, gains or losses of whole chromosomes (aneuploidy), and it is often associated with centrosome amplification. Centrosomes control cell division by forming a bipolar mitotic spindle and play an essential role in the maintenance of chromosomal stability. However, whether centrosome amplification could directly cause aneuploidy is not fully established. Also, alterations in genes required for mitotic progression could be involved in CIN. A major candidate is represe…
CENPA overexpression promotes genome instability in pRb-depleted human cells
2009
Abstract Background Aneuploidy is a hallmark of most human cancers that arises as a consequence of chromosomal instability and it is frequently associated with centrosome amplification. Functional inactivation of the Retinoblastoma protein (pRb) has been indicated as a cause promoting chromosomal instability as well centrosome amplification. However, the underlying molecular mechanism still remains to be clarified. Results Here we show that pRb depletion both in wild type and p53 knockout HCT116 cells was associated with the presence of multipolar spindles, anaphase bridges, lagging chromosomes and micronuclei harbouring whole chromosomes. In addition aneuploidy caused by pRb acute loss was…
Bypass of cell cycle arrest induced by transient DNMT1 post-transcriptional silencing triggers aneuploidy in human cells
2012
Abstract Background Aneuploidy has been acknowledged as a major source of genomic instability in cancer, and it is often considered the result of chromosome segregation errors including those caused by defects in genes controlling the mitotic spindle assembly, centrosome duplication and cell-cycle checkpoints. Aneuploidy and chromosomal instability has been also correlated with epigenetic alteration, however the molecular basis of this correlation is poorly understood. Results To address the functional connection existing between epigenetic changes and aneuploidy, we used RNA-interference to silence the DNMT1 gene, encoding for a highly conserved member of the DNA methyl-transferases. DNMT1…
MAD2 depletion triggers premature cellular senescence in human primary fibroblasts by activating a P53 pathway preventing aneuploid cells propagation.
2012
The spindle assembly checkpoint (SAC) is a cellular surveillance mechanism that ensures faithful chromosome segregation during mitosis and its failure can result in aneuploidy. Previously, it was suggested that reduction of the MAD2 gene, encoding a major component of the SAC, induced aneuploidy in human tumor cells. However, tumor cell lines contain multiple mutations that might affect or exacerbate the cellular response to Mad2 depletion. Thus, the scenario resulting by Mad2 depletion in primary human cells could be different and more complex that the one depicted so far. We used primary human fibroblasts (IMR90) and epithelial breast cells (MCF10A) to gain further insight on the effects …
p14(ARF) Prevents Proliferation of Aneuploid Cells by Inducing p53-Dependent Apoptosis.
2014
Weakening the Spindle Assembly Checkpoint by reduced expression of its components induces chromosome instability and aneuploidy that are hallmarks of cancer cells. The tumor suppressor p14(ARF) is overexpressed in response to oncogenic stimuli to stabilize p53 halting cell progression. Previously, we found that lack or reduced expression of p14(ARF) is involved in the maintenance of aneuploid cells in primary human cells, suggesting that it could be part of a pathway controlling their proliferation. To investigate this aspect further, p14(ARF) was ectopically expressed in HCT116 cells after depletion of the Spindle Assembly Checkpoint MAD2 protein that was used as a trigger for aneuploidy. …